Source code for deeprobust.image.netmodels.densenet

"""
This is an implementation of DenseNet model.

Reference
---------
..[1]Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. "Densely connected convolutional networks." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700-4708. 2017.
..[2]Original implementation: https://github.com/kuangliu/pytorch-cifar
"""
import math

import torch
import torch.nn as nn
import torch.nn.functional as F


[docs]class Bottleneck(nn.Module): def __init__(self, in_planes, growth_rate): super(Bottleneck, self).__init__() self.bn1 = nn.BatchNorm2d(in_planes) self.conv1 = nn.Conv2d(in_planes, 4*growth_rate, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(4*growth_rate) self.conv2 = nn.Conv2d(4*growth_rate, growth_rate, kernel_size=3, padding=1, bias=False) def forward(self, x): out = self.conv1(F.relu(self.bn1(x))) out = self.conv2(F.relu(self.bn2(out))) out = torch.cat([out,x], 1) return out
[docs]class Transition(nn.Module): def __init__(self, in_planes, out_planes): super(Transition, self).__init__() self.bn = nn.BatchNorm2d(in_planes) self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=False) def forward(self, x): out = self.conv(F.relu(self.bn(x))) out = F.avg_pool2d(out, 2) return out
[docs]class DenseNet(nn.Module): """DenseNet. """ def __init__(self, block, nblocks, growth_rate=12, reduction=0.5, num_classes=10): super(DenseNet, self).__init__() self.growth_rate = growth_rate num_planes = 2*growth_rate self.conv1 = nn.Conv2d(3, num_planes, kernel_size=3, padding=1, bias=False) self.dense1 = self._make_dense_layers(block, num_planes, nblocks[0]) num_planes += nblocks[0]*growth_rate out_planes = int(math.floor(num_planes*reduction)) self.trans1 = Transition(num_planes, out_planes) num_planes = out_planes self.dense2 = self._make_dense_layers(block, num_planes, nblocks[1]) num_planes += nblocks[1]*growth_rate out_planes = int(math.floor(num_planes*reduction)) self.trans2 = Transition(num_planes, out_planes) num_planes = out_planes self.dense3 = self._make_dense_layers(block, num_planes, nblocks[2]) num_planes += nblocks[2]*growth_rate out_planes = int(math.floor(num_planes*reduction)) self.trans3 = Transition(num_planes, out_planes) num_planes = out_planes self.dense4 = self._make_dense_layers(block, num_planes, nblocks[3]) num_planes += nblocks[3]*growth_rate self.bn = nn.BatchNorm2d(num_planes) self.linear = nn.Linear(num_planes, num_classes) def _make_dense_layers(self, block, in_planes, nblock): layers = [] for i in range(nblock): layers.append(block(in_planes, self.growth_rate)) in_planes += self.growth_rate return nn.Sequential(*layers) def forward(self, x): out = self.conv1(x) out = self.trans1(self.dense1(out)) out = self.trans2(self.dense2(out)) out = self.trans3(self.dense3(out)) out = self.dense4(out) out = F.avg_pool2d(F.relu(self.bn(out)), 4) out = out.view(out.size(0), -1) out = self.linear(out) return out
[docs]def DenseNet121(): """DenseNet121. """ return DenseNet(Bottleneck, [6,12,24,16], growth_rate=32)
[docs]def DenseNet169(): """DenseNet169. """ return DenseNet(Bottleneck, [6,12,32,32], growth_rate=32)
[docs]def DenseNet201(): """DenseNet201. """ return DenseNet(Bottleneck, [6,12,48,32], growth_rate=32)
[docs]def DenseNet161(): """DenseNet161. """ return DenseNet(Bottleneck, [6,12,36,24], growth_rate=48)
[docs]def densenet_cifar(): """densenet_cifar. """ return DenseNet(Bottleneck, [6,12,24,16], growth_rate=12)
[docs]def test(model, device, test_loader): """test. Parameters ---------- model : model device : device test_loader : test_loader """ model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) #test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss test_loss += F.cross_entropy(output, target) pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset)))
[docs]def train(model, device, train_loader, optimizer, epoch): """train. Parameters ---------- model : model device : device train_loader : train_loader optimizer : optimizer epoch : epoch """ model.train() # lr = util.adjust_learning_rate(optimizer, epoch, args) # don't need it if we use Adam for batch_idx, (data, target) in enumerate(train_loader): data, target = torch.tensor(data).to(device), torch.tensor(target).to(device) optimizer.zero_grad() output = model(data) # loss = F.nll_loss(output, target) loss = F.cross_entropy(output, target) loss.backward() optimizer.step() if batch_idx % 10 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item()/data.shape[0]))