Source code for deeprobust.image.netmodels.vgg

"""
This is an implementation of VGG net.

Reference
---------
..[1]Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).
..[2]Original implementation: https://github.com/kuangliu/pytorch-cifar
"""

import torch
import torch.nn as nn
import torch.nn.functional as F

cfg = {
    'VGG11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'VGG13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
    'VGG16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
    'VGG19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}


[docs]class VGG(nn.Module): """VGG. """ def __init__(self, vgg_name): super(VGG, self).__init__() self.features = self._make_layers(cfg[vgg_name]) self.classifier = nn.Linear(512, 10) def forward(self, x): out = self.features(x) out = out.view(out.size(0), -1) out = self.classifier(out) return out def _make_layers(self, cfg): layers = [] in_channels = 3 for x in cfg: if x == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1), nn.BatchNorm2d(x), nn.ReLU(inplace=True)] in_channels = x layers += [nn.AvgPool2d(kernel_size=1, stride=1)] return nn.Sequential(*layers)
[docs]def test(model, device, test_loader): """test. Parameters ---------- model : model device : device test_loader : test_loader """ model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) #test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss test_loss += F.cross_entropy(output, target) pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset)))
[docs]def train(model, device, train_loader, optimizer, epoch): """train. Parameters ---------- model : model device : device train_loader : train_loader optimizer : optimizer epoch : epoch """ model.train() # lr = util.adjust_learning_rate(optimizer, epoch, args) # don't need it if we use Adam for batch_idx, (data, target) in enumerate(train_loader): data, target = torch.tensor(data).to(device), torch.tensor(target).to(device) optimizer.zero_grad() output = model(data) # loss = F.nll_loss(output, target) loss = F.cross_entropy(output, target) loss.backward() optimizer.step() if batch_idx % 10 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item()/data.shape[0]))